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ABSTRACT

A numerical approach to solving the two—dimensional ,
incompressible Navier—Stokes equations is presented
and is used to study the stability and evolution of
disturbances in a boundary layer. Prev ious numer ical
approaches have used streamfunction—vorticity formu-
lat ions that take advantage of the special properties
of two-dimensional flow . The present method solves a
finite-difference form of the momentum equations and
may therefore be extended to three—dimensions more
readily . Computat ions using this technique are
compared with the result of linear stability theory
for small amplitu de disturbances and are foun d to
give satisfactory agreement , while calculations at
large amplitude support the conjecture that non—
linear effects can be destabilizing.
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I index denoting cell columns
I index of right-most columns
j  index denoting cell rows
J index of top-most row
n index denoting time level

p,P fluid pressure divided by mass density

R Reynolds number (U~6/v)
T period of oscillation of disturbance
u,U streamwise component of fluid velocity

U~c, 
free-stream velocity

x streamwise coordinate

y normal coordinate

Greek .

a dimensionless wavenumber (2iT6/A)

dimensionless frequency of oscillation (2~rt5/U01T)
6 momentum th ickness of boundary layer

6x ,t5y,6t finite space and time increments

V2 Laplacian operator (~~ /~x
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y2 )
0 logarithm energy change
A wavelength of disturbance

v kinematic viscosity of fluid
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INTRODUCTION

One of the principal interact ions between a f lu id and a sol id
structure Is the tan gental force due to relative mot ion. At
low velocities , when the flow is st ill laminar , the drag force
Is small , but at higher speeds , when the flow has become
turbulent , the drag, as well as the heat transfer , increases
enormously . It is of pract ical interest to be able to under-
stand the mechan isms leading to the transition from a laminar
to turbulent flow and to be able to predict and control that
phenomena.

The onset of turbulence is preceeded by a mot ion in the boun dary
layer that is certainly three—dimensional and probably highly

nonl inear . Any theory that would explain the transition process
must address these two issues in some manner. At its init ial
stages , however , transition appears to involve fairly regular ,

¶ small amplitude , two-dimensional disturbances that are capable

of extract ing energy from the mean flow and thereby grow
rapidly. This mot ion is within the power of analysis to
investigate as an elgenvalue problem and , consequently , it has

t been extensively studied .

The extension of these results to true initial value problems ,

large amplitudes , and three-dimensions has proven to be quite

diff icult for analysis and so it is des i rable to develop other
approaches to assist in understanding these effects. One

promising approach is the direct , numerical solution of the

governing equations. Encouraging results have already been

obtained by Fasel (1976) and Murdock (1977) using a stream—

function—vorticity formulation of the equations of motion .

Fasel employed a three—time—level finite—difference solution
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algorithm , while Murdock has combined an orthogonal funct ion
expansion in one spatial direction with a f in i te -d i f fe rence
formulation In the other. The two methods appear to give good

agreement with linear analysis and with one another .

The present work explores another numerical approach : the f i n i t e —
difference solution of the momentum form of the Navier-Stokes
equat ions . Three var iables (two velocities and a pressure ) must
now be calculated instead of two (a streamfunction and vorticity),

however , the numerical technique is readily extended to three—

dimensions where the concept of a streamfunction is no longer

valid. The finite—difference algor ithm used dif fers  from th at
of Fasel in two respects. The present scheme in troduces no numer-
ical viscosity into the solution , while Fasel ’s scheme is

-~ . slightly dissipative . Secondly, the present scheme requires
storing the flow information at only one time level , instead
of at two levels as in Fasel’s approach . The considerat ion of
computer storage may be a critical one when three-dimensional

calculations are attempted. Both schemes involve systems of

nonlinear algebraic equations which must be solved iteratively.

The work presented here describes the details of the problem

formulation and numerical solution procedure as applied to
spat ially periodic , parallel flows. Comparisons with the results

of linear analysis are made and ver ify the correctness of the
numerical solut ions . Finally , the effects of large amplitude on
subcritical stability are investigated and indicate that non—

linear effects can be destabilizing. 
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2. THE MATHEMATIC AL FORMULATION

The motion of the fluid is assumed to be described by the two—

dimens ional , incompressible , time—dependent Navier—Stokes

equat ions . Norma lizing the spat ial distances by the momen tum
thickness of the boundary layer , 6, the velocities by the free

stream value , U~ , an d t ime by 6/U~ , the equat ions of motion
become

1 2-~~~+ u~--- + v ~-— + 3 = ~V u  ( 1)

( 2 )

(3)

Here , x and u are the coordinate and velocit y in the streamwise
direction , y and v are the coordinate and velocity in the
direction normal to the boundary , p is the fluid pressure divided

by the mass density , and R = U~6/v is the Reynolds number , where
v is the kinematic viscosity. The Laplacian operator is

2 ~2 a 2
V =r ax

It is conven ient to def ine a base flow , denoted by capital

letters , that satisf ies the steady flow equat ions

U~~~+ V ~~~+~~~~=~~V
2U (4)

3
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(5 )

6
3x ay )

For high Reynolds number flows , these equations can be solved

either directly or by using boundary-layer/potential flow

techniques. Disturbances to the base flow then satisfy

+ U~~
_

~ + u~~~ + u ’~~4~- + v~~- + vj~ + V

(7)

+ U~~ — + u~~
1 + u~~~— + V!~

_ 
+ v~~-~ + v ’~-at ax ax ax ay ay

(8)

au ÷ av — 0 (9)
ax

The boundary condit ions appropriate to these equat ions are that

the disturbance quantities vanish far from the solid boundary ,

u ,v ,p~ 0 as y ÷ , (10)

the disturbance velocities vanish on the solid boundary ,

u~ = v~ = 0 at y = 0 , (11)

and , by evaluating (8) on the boundary and using (9), that

4
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1 a U at y = 0 . (12)R axay

Boundary conditions in the streamwise direction depend on the

nature of the problem being solved .

The techniques developed in this work are capable of solving
the disturbance equations for the most general base flows , but
here we shall consider the special case of parallel  flow , when
U = U ( y )  and V = 0. S t r ic t ly  speaking, the only such flow
sa t i s fy ing  this condition is the parabolic d ist r ibut ion.  In the
thin boundary layers that  form at high Reynolds numbers , however ,
the normal velocity f ield is extremely small and the assumption
of parallel flow is nearly met (Schl ich t ing ,  1960 , p l l6 f f ) .  The
disturbance equations can then be simplified to the form

(13)

+ v _ + !~P _ = ~~~~
2v (14 )

+ •~~~~
-. = 0 . (15)

The linearized form of equations (13) — (15) have been extensively

studied , especially the growth rates and spectral properties of

periodic disturbances. The assumptions of linearization and

periodicity allows the equations above to be transformed into

a single ord inary dif feren tial equation , the Orr—Sommerfeld

equation . The resulting body of knowledge , known as linear
stability theory (LST), offers a quantitative test of the direct

numerical solution of the equations .

The results discussed in th is work are for paral lel flows in
which U is taken as the horizontal component of the velocity

5
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over a flat plate , the Blasius profile. In order to compare with

LST , the disturbance flow is assumed to be periodic with wave-

length A in the streamwise direction. There are then two param-

eters describing small amplitude motion , the Reynolds number , R ,

an d the dimens ionless wavenumber a = 2 T r ô / A .

I;

I

I..
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3. THE NUMERICAL SOLUTION TECHNI QUE

The equations (13), (14), and (15) subject to boundary conditions

(10), (11), and (12) are to be solved in a region 0 < x <

and 0 < y < ~~~~. The region is first divided into finite sized

cells , of constant size in the horizontal and variably spaced

P in the vertical (see Figure 1). Within each cell , the horizontal

velocity is defined at the center of the left face , the vertical

velocity at the center of the bottom face , and the pressure at

the cell center (see Figure 2).

The following finite-difference form was used to represent the

time rate of change of the discrete velocities

au 1
= — 

~~~~~~~~ U~ ~~~~~~ 
— u1..1~~ )

— 

~
-
~
-j [u~÷~~~ (u

~+i~~ 
+ u1~ 1~~)

— u~_1 ,~ (u~~~ + u1 1~~)]

— 

46y [u 1~~ +1 (v 1~~ ÷1 + v1 1~~÷1)

— ~~~~~~ (v.a  + vi_i ,j)]

— ~~~~~ ~~~~ 
+ ~~~~~~ + V 11 ,~~ + Vjlj+l)

— -
~~~~~ ~~~~ —

(cont inued )
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FIgure 1. A Typical Finite—Difference Mesh Configuration
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Figure 2. Variable Placement Within a Finite-Difference Cell
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+ 

R ( Ô x ) 2 (u 1~,~1 ~ 
— 2u 1~~ + u1...1~~~)

1 1 1  )+ R6y
3 [6y~ ÷~ 

U~~~.fj• 
— i , j

- 6y~~~ 
(u1 j  - u~~,~~_ 1)] (16 )

~~~~ 
= — ~~~~~~~~ (U~ ÷ IJ~ _ 1) ( v 1+1 ,~ — v1_1 ,3)

— ~~~ [vi÷i j u~~1~~ + u 1÷1~~~~1)

— 
v1_1 ,~ 

(u 1~~ +

— 
4ó~~ _~ 

[v1~~+1 (v 1~~ + v~~~ ÷i )

_ v
1,~ _1 v1~~ + v1,~ _1)] - £y~~~ ~~~~ —

+ 2 (v 1~ 1~~ — 2V 1j  + v1_ 1 , j )

1 11  — v  )+ R6Y~~~ (T3~ 
v1 j ÷1 i , j

- 6y~~~~ 
(Vj j  

- v
i ,j_l )] . (17)
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Here ó y
~~~ ~~~~~ + 6y 1) .  Also , we have dropped the pr ime

from the lower case quantities since no confusion with total

velocities or pressures can result . The difference form used

for the nonl inear terms is that of Piacsek and Williams ( 1970) .

If I and J represent the total number of columns and rows used ,

with columns i=1 and I and rows j 1  and J being boundary cells

outside the physical doma in , then the boundary conditions
become

~~~~ = 0 ~~~~ —u1,~~_1 ~~~~ 
= 

~~~~~~~ 
(18)

v. = 0 , u. = -u.i,2 1,1 i,2

2

~i,1 
= 

~i,2 + ~~~ (u~÷~ 2 — u1 2 ) (19)

= = 
‘ 

pI,j 
= P2,i 

(20)

I
U
1~~~ = U1_1 ,~ v1~~ = v1_1 ,~ P1~~ 

= P1.1~~ 
. (21)

The pressure f ield is determined so as to guaran tee that
equation (15) is satisf ied. Before discussing the details of
how the pressure is calculated , it is conven ient to define the
tilda finite—difference operators

“ I

— ,au~ 1 , 22— ‘iE7 i ,j  — 
~~~~~~ ~Pj,j 

— P
~~ i,j

= 

~~~~~~~ 
- 6y~~~ 

(P jj - Pj,j_1 ) (2 3)

11
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that is , they are the t ime rate of change operators without the
pressure terms. The solutions are advanced in time by the time—

average , implicit algorithm

= + ~6t [(-~
-
~~

)
~~~~ + (-

~
-
~
)r

~] 
( 24)

where the superscript indicates the time level and dt is the finite

t ime step . This scheme when used with central , space differencing
introduces no numer ical dissipat ion (Roach , 1976 , p.84). The

velocity f ields are then given by the formulae

n+1 — n 
+ 
1 .

~~ 
f,au~n ~u 1 ot n+i n+i— ~~~~ ~6 [‘~T’i ,j  + 

~ T~i ,j J  — 
~~~~~~~~~ ~~~~ —

(25)

6t n+1 n-i-i
= u1~~ — 

~~~~ ~~~~ 
— 

~~—i,) 
(26)

and

~~~~ = ~~~~ + ~~6t ~~~~ + ~~~~~ — 
26y~~~ 

—

(27)

— 

26y~ _~ 
— P~~~~ l) . (28)

Because the time derivatives involve products of the fluid

velocities, (26) and (28) are coupled , nonl inear algebraic
equations . Furthermore , the pressure f ield at the new t ime
level must be chosen so that the new velocities are divergence —

free , that is

~~ (u~~~~j - ur~) + 
~~ (vr~~+1 

- vr~
) = 0 . (29)

12
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This last relat ion leads to the following linear , elliptic

boundary value problem for the pressures

1 I n+1 n+1 n+1

( 6x ) 2 [~i÷i ,~ 
— 2”i,j +

1 1 1 n+1 n+1+ — u  (p .  - - p  .)6Yj l.6Y j+~ i,j+1 i,j

1 n+1 n+1
— 

~~~~~ 
(Pj,j —

= 

~~ 
[
~ 
(
~ i÷i,~ ~~~~~ 

+ 
~~~~~~~~~ ~~~~~~~ 

- 

~~~~~)] (30)

The solut ion is advanced to the n+1 st t ime step through the
following iterative scheme

1. The new velocit ies and pressures are set equal
to the prev ious values .

2. The tilda velocities are computed using (25) —

(28). 
-

3. The system of equat ions (30) is inverted to
obtain a better guess of the pressure.

4. Equat ions (26) and (28) are used to obtain
a better guess of the velocit ies

5. Steps (2), (3), and (4) are repeated unt il the
quantities do not change by some predetermined

amount .

The solution of (30) is obtained by decomposing and backsolving

the banded pressure matr ix using the Cholesky method. The
manipulat ions are carried out by an especial ly eff icien t routine
developed by M. Vander Vorst of JAYCOR .

13
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Stability of the solut ion requ ires that the t ime step does not
exceed values imposed by the advection and diffusion terms .

t~t < min {IU~ +
6’
~u1~~~t ‘ 

~ ( 6x )~ ~ (6 y~ )~~ (31)

Experience has shown that if 6t is taken to be one—quarter of

the maximum time step allowed , then at least three significant
figures are obtained in the velocity and pressure fields with

five iterations .

14
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4. COMPARISON WITH LINEAR STABILITY THEORY

The linearized form of equations (13) — (15) have been studied

in detail , e.g., Wazzan , et al., (1968), Jordinson (1970) , the

case of greatest interest being when U t akes on the Blas ius
profile. See also the reviews by Tani (1969) and Reshotko

( 1976). Not onl y have detai led quan titat ive solutions been
obta ined , but t he predicted f lu id dynamic behav ior is in close
agreement with exper imen tal observa tion of small disturbances
in the boundary layer of a f la t  plate. For example , see Ross ,

et al., (1970). Comparison with LST offers then a meaningful

test of the nume rica l approach .

When the disturbances are periodic in space , the elgenfunctions

are characterized by the two parameters a and R. Figure 3 shows
the curve of neutral stability , that is those distrubances wh ich
neither grow nor die out , as determined by Jordinson ; points

ins ide the curve are uns table flows , those ou tside are stable.
Below the crit ical Reynolds number of 520, LST predicts that all

disturbances die out and thus that the boundary layer is

completely stable .

To compare with the pred ictions of LST a ser ies of numer ical
exper iments were conducted . In each case the mesh cons isted of
18 constant-sized cells in the horizontal , periodic direction

and 34 variably—sized cells in the vertical . The smallest

vertical cells were 0.16 wide , while above y = 2.06 the cells

expanded geometrically so that the top of the last cell was
almost 1006 from the solid boundary . Figure 1 shows the mesh

configuration up to y = 256. The top boundary appears to not

influence the results , since plac ing it fur ther away led to
no chan ge in the f low proper ties. The base flow was given a
small disturbance which was then allowed to evolve toward a

f inal state.

15

— -
~~
- -—— .‘

~& ...- - . 7. L_~ ~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~ ________ ~~~~~~~



- - —

~~

-—-- ‘—

~~ 

-: —

~~~~
- -- -—-- --‘------- - --

~

--—
~

---

~~

-- 

~~~~~~~~~
‘
~~
-:T

~~~~~~ 

- --- -.--—-——---— --- .- --—. _ ‘
~~~~~~~.

— —_.—-
~~

-—,
~~~ -

. no
I I I

O Q .
~1-1

r I b D

.~~

0-

w Q )

z

O E
• 0 r4 .~* *
- o 6 ,.~
+ + I

I 0 0 ,0
I

r40
, i

II
~I00 I 

~~~4)

/ 
~~~

o
w

0 

*+ -

0 0 .,.
~-J + 0

0 - o  
~~~~~~~N

0

r 4H

p.. —
~~~~~ o 

~ 4 ) .
0 0  c p. 2+ + -~~~~~~~

0 0 0  —

+

0

o

C’)

4) -:

I I I I I 0
0 0 in 0 210 N . . .
d 0 0 0 0 0

16 

~~~~~~~~~~~~~~~

-- ~~~~~~~~~~~~ ________________ i

~~~~~~

=-

~~~

_

~ 

- 
- -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
S -

The circ les shown in Figure 3 represen t the matr ix of numerical
experiments conducted. The numbers indicate the logarithmic

energy change per period of oscillation

e = ~n , T = period of disturbance . (32)

Th is quan tity has not yet reached a f inal va lue in al l cases ,

so the quoted value , taken at the end of a run , may change

slightly. Figure 4 shows the variation with time of the energy

for most of the runs .

Figure 5 compares the time variation of production and dissi-

pation for one case near the neutral curve , where

production = if dx dy (- uv ~~
) (33)

dissipation = -ffdx dy (uV2u + vV2v) . (34)

The production is the rate at which energy is extracted from

the base flow , while dissipation is the rate at which it is lost

to heat . The rates should be equa l for a neutra l case . Since
the initial disturbance is not a pure eigenmode of the system ,

and since neighboring modes die out slowly, the f low requires
a considerable t ime to settle into a single , pure mot ion. That
difference dist inguishes a true init ial value problem from the
eigenvalue prob lem posed by LST .

Since negative values in Figure 3 indicate damped motion and

posit ive values ind icate growth , the results are not in con flict
with LST . In fact , when nearby pairs of numerical calculations ,

one showing growth and the other decay , are used to interpolate
a neutral condit ion , the results agree with LST to within a few
percent for both the wavenumber and frequency, see Table 1.
Here , ~ Is the dimens ionless frequency of oscillation. The
numer ical calculat ion appears to have correctly reproduced the
overall energy balance and time behavior in the flow.

17
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3000 , 0.20
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01 I I I I I I
0 100 200 300 400 500 600 700

NORMALIZED TIME

Figure 4. Time variat ion of the flow energy
for several numerical calculat ions.

18 

-4~~~~ - _ - . -~..~

—--— -i. ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ =-= 
-

~~~~~~~~~~~~~~~~~~~~~~ .



_________________ 
- -

I I I I I I I

R=800 a=0.20
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w PRODUCTION
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Figure 5. Comparison of Production and Dissipation
Rates During the Relaxation to a Final
State for a Case Near the Neutral Curve .
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Table 1.

R a

numerical 0.348 0.128
1000

LST 0.351 0.131

numerical 0.1239 0.0327
2000

LST 0.1234 0.0332

numerical 0.295 0.0927
2600

LST 0.297 0.0947

numerical 0.1051 0.0257
3000

LST 0. 1029 0.0235

a R

numerical 530 0.1167
0.30

LST 521 0.1175

20
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Next , details of the flow field were examined. Figure 6

shows the variation with time of the horizontal disturbance

velocity at a particular streamwise position and for various

distances from the wall. This format is analogous to the

continuous output of a velocity probe and shows the experi-

mentally observed pattern (Schlichting, 1969, p.403) that the

amplitude grows with distance from the wall , reaches a peak ,

suffers a phase reversal , and dies out . The calculated period

of oscillation is 93.79 while the theoretical value is 93.48.

Figures (7) and (8) compare the amplitude and phase variation

with distance from the wall found from a numerical calculation

and Jordinson ’s eigenfunction solution. The comparison shows

that the details of the flow are reproduced completely,

including the subtle phase variations occurring in the flow near

the wall. The numerical ca1culation appears to have correctly

reproduced the flow details as well as the overall energy

balances.

- . 
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5. FINITE AMPLITUDE EFFECTS

— 
The previous compar isons with linear stability theory suggest
that the behavior of small amplitude disturbances is being

k correct ly computed numerically. A series of calculations was

then performed to determine the effects of finite amplitude .

In each case the init ial disturbance had the same spatial dis-
tr ibut ion but the maximum amplitude of u was taken as 0.0001 ,
0.01, 0.03, and 0.1 of U~ . The results show a trend conjectured

t by nonlinear stability theories (Stewartson , 1975) that finite

amplitude effects can be destabilizing.

Figure 9 shows the var iat ion of the total energy in the
disturbance flow in each case, normalized to the same initial

value. The case considered is R = 500, a = 0.30, a point in

the subcritical regime where LST predicts all disturbances to
die out . At the smallest amplitudes the disturbance dies out
at a rate consistant with LST. For u~ = 0. 03 , however , the
decay has been not iceably decreased , while for u = 0. 1 the
disturbance is almost neutrally stable . Although a truly
unstable state was not achieved , the destabilizing effects
seem to be def in ite. A similar var iat ion is seen for unstable
small ampl i tude modes: as they grow to f inite amplitude the
rate of growth increases .

Figure 10 further illustrates the effects of finite amplitude ,

by cons ider ing the integrated production and dissipat ion rates
for the case R = 500 , a = 0.30. At small amplitudes dissipation
always exceeds product ion and the disturbance monoton ically dies
out.  At u # 

= 0.1, however , the production exceeds dissipation

during part of the oscillation , so that for some time it grows

- - 
~
. and for some time it is damped. The damped periods are greater

so that the disturbance is dying out overall , but a balance is
almost being struck .
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i . 1
The accuracy of f inite difference techn iques for large
amplitude phenomena is dif ficult to assess and so a deta iled
invest igat ion Is probably not warranted at this t ime . St ill ,

the results , ind icate that the numerical solut ion techn ique
used in th is work may be a useful tool in studying f inite
amplitude effects in the boundary layer.
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6 . CONCLUDING REMARKS

The finite—difference method presented here has been shown to

accurately reproduce analyt ical results concern ing boun dary
layer stability with a modest storage requirement (612 interior

cells) an d modest computationa l time ( ty picall y 2 — 5 minutes

of CDC 7600 central processor time). This efficiency , coupled

with encouraging results in the nonl inear regime , makes the
approach an attract ive cand idate for studying the large
amplitude , three—dimensional motion that accompanies boundary—

layer transition.
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